The 10 most influential processors

Amstrad PC1512
The Amstrad PC1512 used the 16-bit 8086 yet still drove down the cost of personal computing

Almost 40 years ago, Intel announced "a new era of integrated electronics" with the advent of the 4004 processor.

While this might have been the first ever microprocessor, it's hard to think of it as one of the all-time greats. After all, it had a 4-bit architecture, it was clocked at 740kHz (that's 0.74MHz, or 0.00074GHz), and could access just 4kB of program memory, plus 5,120 bits of data storage.

9. POWER & PowerPC

Roadrunner

POWER CHIPS: Roadrunner, the world's first petaflop computer, is built around POWER-based cell chips

For 11 years, in its PowerPC variant, it powered Apple Macs. However, perhaps its biggest achievement is that it's now found in many of the fastest supercomputers, including places three, five, eight and nine in the most recent TOP500 list, the league table of the world's supercomputers.

Intriguingly, the POWER-based Cell chip, of which the third-placed Roadrunner supercomputer contains 12,960, is also used in the Sony PlayStation 3.

8. MOS Technology 6502

In 1975, a now defunct company called MOS Technology introduced the 6502 processor. It went on to influence a generation.

Technically, it was nothing special – an 8-bit chip designed by the team responsible for the Motorola 6800, and similar to it in many ways. Where it broke new ground was in its cost. With a launch price of $25, considerably less than equivalent chips from Intel and Motorola, it started a price war.

BBC micro

BBC MICRO: Powered by the 8-bit 6502, the BBC Micro introduced a whole generation to modern computing

This then fuelled the home computer revolution. The 6502 first made its appearance in machines such as the Apple I and II, the Commodore PET, and the Atari. Here in the UK, it first made its presence felt in the BBC Micro. Introduced by Acorn in 1981 and priced at £235, this didn't have the same super-low pricing or mass market appeal as the likes of the Sinclair ZX81, but it had one important thing going for it.

Due to being featured in the BBC's Computer Literacy Project, it became established as the de facto educational computer and sold to schools by the millions. As a result, a whole generation was introduced to computing, and it was all down to the 6502.

7. Intel 80386

Each new x86 generation broke new ground, but the 80386 (the 386 to its friends) represented a quantum leap. The 4-bit chips lasted just a year before being toppled by their replacements, 8-bit architecture held the top spot for six years, and the 16-bit 8086 had just a seven-year innings.

When the 386 appeared in 1985, it introduced the 32-bit architecture that was the status quo for two decades. It wasn't until 2003 that 64-bit x86 chips entered the mainstream, and 64-bit computing still isn't universal today.

There was the instruction set to consider too. Estimates vary, but the 8086 is reckoned to have had around 120 of them, the 286 added around 17 more, and the 386 increased that number to about 200. Adding instructions doesn't mean a computer can do additional tasks, but transferring work from software routines to the processor's hardware can give a performance boost.

When you bear in mind that the 8086 launched at a clock speed of 5MHz, the 286 at 6MHz, but the 386 at 12MHz, you can see why it was the must-have chip of the 80s.

6. AMD Athlon 64

The AMD Athlon 64 takes its place in our league table as the chip that brought 64-bit computing to the masses. No longer would this headline figure be the sole domain of UNIX workstations and servers. As of 2003, desktop PCs could take advantage of a processor with 64-bit registers and 64-bit buses.

But what does that mean in practice? The first advantage is clear. Because data can be operated on in chunks of 64 bits instead of 32 bits, only half as many instructions have to be executed. That's an instant doubling in speed.

Athlon 64

AMD ATHLON 64: The RISC chips were the first to move to 64 bits, but AMD's Athlon 64 brought it to the masses

Then there's the amount of memory that can be accessed. Here the increase is staggering, from 4GB with 32-bit chips to a theoretical 16 Exabytes (that's 16 billion Gigabytes) with 64-bit architecture. Most 64-bit processors – the Athlon 64 included – don't make all 64 bits of the address bus available on external pins, so they can't address this much memory in reality.

However, for the cost of a few pins, they'd be able to store 2GB for every person on Earth. That's why some experts reckon we'll never need to go beyond 64 bits – though we're not betting on it!