Green PC or powerful gaming? How to get both

Green gaming
If you have a dream of running a green gaming rig without sacrificing quality, you might be dissapointed

The world of gaming systems is driven by the expressions of power. It's all swirling graphics and butch names, usually from Greek mythology. All a little adolescent really.

Now, however, being green is becoming sexy in an odd sort of way. It shows you care and can get you chicks (tongue + cheek).

Water cooling

As for cooling: a typical fan might consume six watts or so and be able to idle at less, not much really. Going passive will save you that, of course, and all those copper pipes and aluminium fins look dead cool [Could you sound any older? – Ed].

But this on it's own isn't going to save you that much, and passive cooling can introduce all kinds of problems.

Memory

PC memory uses about 8W a stick for 1.8V. The simple way to reduce power is to reduce the voltage, which has been dropping steadily anyway. DDR started out at 2.5V, DDR2 at 1.8V and DDR3 at 1.5V. DDR4, due anytime 2012ish, should start out at running at 1.2V. Fitting fewer larger sticks doesn't hurt either as long as you keep your channels populated.

memory

In the meantime we have low voltage DDR3 modules appearing which can run at as low as 1.25V. These are a trifle expensive though and quite frankly unless you are running some sort of server farm aren't worth the special investment. When the low voltage sticks become readily affordable then it is an obvious way to shave off some watts.

If you've been toying with the idea of fitting more memory though then go for it, as this will stop Windows hitting the swap file as much and spinning up the hard drive. Talking of which, we move onto…

Hard drive

Power and consumption here is pretty much directly linked to the spin speed, access time and the capacity. A typical drive burns between 10 to 15W at full chat and half that at idle. Obviously two drives means more power, so always go for one big drive.

Hard drive

There are a few clever things the manufacturers can do here, and are beginning to. Hitachi has a new energy efficient Deskstar range, which still runs at 7,200rpm but manages under 5W at idle and an impressive 7W or so at full bore. The price paid is sluggish access times, over 18ms, and like going back to 90s.

Western Digital has released what it terms its 'GreenPower' series, which runs at a more leisurely 5,200rpm and boasts a reduction of four or five watts. A saving, but again performance takes a hit.

What is clear from these greener drives is that you don't get owt for nowt. There is just not enough wriggle room to make significant saving without reducing performance.

How about solid state drives then? No motor to spin here. We were expecting some savings, and were disappointed.

Using our high-end test system we swapped out the 2.0TB traditional drive and fitted a 40GB SSD. Power consumption at the desktop dropped from 170W to 162W, putting a heavy load on the drive it managed a tad over 185W against around 200W. A saving, but nothing spectacular.

In fact one of the major disappointments of SSDs, particularly for laptops, is the minimal power savings, when compared to 2.5-inch laptop drive there's not much in it. The trouble is when SSDs are active they always draw their maximum power, unlike traditional drives, which only use maximum power when moving rapidly.

It's a developing technology though, and power saving modes have yet to be sorted out. Perhaps somebody could have a word with Microsoft about the way Windows seemingly insists on hammering the drive at every opportunity. But now for the real culprit…