Why enterprise AI needs connected clouds
Balance the need for data security with computing power
As AI evolves alongside the expansion of cloud computing, it gains significantly enhanced capabilities for storage, processing and data management. Modern enterprises are capitalizing on this by strategically integrating resources from on-premises, edge and cloud environments. This vital integration enables the deployment of powerful and efficient AI tools across various settings.
Effective cloud integration also allows organizations to balance the crucial need for data security with the substantial computing power required to train and deploy sophisticated AI models. Achieving this balance is essential for optimizing resource utilization and improving operational efficiency in a cost-effective manner.
Associate Principal Solutions Architect, Red Hat.
The hybrid cloud car analogy
To understand this integration better, think of hybrid cars, which optimize performance and reduce costs by combining electric and traditional fuel systems. Similarly, a hybrid cloud infrastructure positions AI workloads on the best platform. For instance, large language models can leverage the power of the public cloud for training, while sensitive data remains secure on-premises or at the edge.
This flexible approach means organizations can refine and fine-tune models with proprietary data, while remaining secure and legally compliant. The ability to move AI workloads between edge, on-premises and cloud environments as needed, without compromising performance or security, helps organizations harness AI to achieve growth.
The need for trust and transparency
AI's success hinges on trust, particularly in industries with stringent regulations. Large language models must not only be explainable but also be based on verified proprietary data, ensuring confidence in their outputs. Open source plays a central role in this, providing transparency throughout the AI lifecycle, from data pipelines to model development and deployment.
This transparency extends beyond the models themselves to encompass the data used to train them. Proprietary data from legacy systems is especially valuable for enterprise use cases. By training models on this curated data, organizations can instill confidence that AI outputs are derived from real-world data unique to their operations. For example, training customer service AI chatbots on years of genuine call transcripts ensures responses reflect real customer conversations, avoiding the pitfalls of generic online dialogues.
The importance of a collaborative ecosystem
The integration of AI with hybrid cloud demands an open and collaborative ecosystem where organizations work together, sharing best practices, data assets and training resources. An open source mindset helps enterprises to integrate various components of their technology stack, from data pipelines to models, providing a more consistent experience. Breaking down silos between developers, data engineers and IT operations is also crucial for addressing operational challenges effectively. Ultimately, greater collaboration brings more cohesive development, deployment and maintenance of AI models.
Are you a pro? Subscribe to our newsletter
Sign up to the TechRadar Pro newsletter to get all the top news, opinion, features and guidance your business needs to succeed!
Sustainable architecture for AI
With increasing AI adoption, one of the most notable challenges is the significant energy usage associated with training and running AI systems. A hybrid architecture allows workloads to be seamlessly migrated between on-premises, edge and cloud environments to optimize costs over compute, storage and network resources.
A hybrid cloud infrastructure also enhances data management by positioning data pipelines across on-premises, edge, and cloud environments as needed. This reduces latency, improves responsiveness, and allows enterprises to balance cost-efficiency with technical capabilities, supporting the efficient development and deployment of AI models.
This integration is more than just a technological solution – it is a strategic imperative that enables enterprises to innovate and adapt in an interconnected AI landscape. By blending hybrid cloud resources, organizations can fully harness AI’s potential, unlocking new opportunities and ensuring sustainable growth.
We list the best cloud management software.
This article was produced as part of TechRadarPro's Expert Insights channel where we feature the best and brightest minds in the technology industry today. The views expressed here are those of the author and are not necessarily those of TechRadarPro or Future plc. If you are interested in contributing find out more here: https://www.techradar.com/news/submit-your-story-to-techradar-pro
Erica Langhi, Associate Principal Solutions Architect, Red Hat.